Jorden

Fra Wikipedia, den frie encyklopedi
Gå til: navigasjon, søk
Jorden  Det astronomiske symbolet for Jorda
The Earth seen from Apollo 17.jpg
The Blue Marble, tatt fra Apollo 17
Sosial statistikk
Største befolknings-
konsentrasjoner
Tokyo, Mexico by, Seoul, New York, São Paulo, Bombay
Språk (2007 est.) Kinesisk mandarin 13,22 %,
Spansk 4,88 %,
Engelsk 4,68 %,
Arabisk 3,12 %,
Hindu 2,74 %,
Portugisisk 2,69 %,
Bengali 2,59 %,
Russisk 2,2 %,
Japansk 1,85 %,
Tysk 1,44 %,
Wu-kinesisk 1,17 %,
andre
Religion (2007 ant.) Kristne 33,32 %,
Muslimer 21,01 %,
Hindu 13,26 %,
Buddhister 5,84 %,
Sikher 0,35 %
Jøder 0,23 %
ikke-religiøse 11,77 %,
andre 11,78 %
Befolkning (juli 2007 ant.)
 – Totalt 6 602 224 175
 – Befolkningstetthet 44,33 per km²)
 – Årlig befolkningsvekst 1,167 %
 – Forventet levealder 65,82 år
Valutaer US dollar, Japansk yen, Euro, Britisk pund, andre
BNP (Anslag fra 2007)
 – PPP 65,820 mrd IND
  – per capita 9969 IND
 – Nominell 53,640 mrd USD
  – per capita 8125 USD
Baneparametre
Epoke J2000
Aphel 152 097 701 km
AU
Perihel 147 098 074 km
0,9832899 AU
Store halvakse 149 597 887 km
1,00000011 AU
Eksentrisitet 0,01671022
Omløpstid 365,256 96 døgn
1,0000191 år
Gjennomsnittsfart 29,783 km/s
Inklinasjon 0,00005°
(7,25° til Solens ekvator)
Lengda til oppstigende knute 348,73936°
Perihelargument 114,20783°
Naturlige satellitter 1 (Månen), men se også 3753 Cruithne
Fysiske egenskaper
Diameter ved ekvator 12 756,28 km
Poldiameter 12 713,56 km
Middeldiameter 12 742,02 km
Overflatens areal 510 072 000 km²
 – Land (29,2 %) 148 940 000 km²
 – Vann (70,8 % 361 132 000 km²
Volum 1,0832×1012 km³
Masse 5,9736×1024 kg
Middeltetthet 5,515 g/cm³
Gravitasjon ved ekvator 9,780 m/s²
0,99732 g
Unnslipningshastighet 11,186 km/s
Rotasjonsperiode 0,997258 døgn
23,934 t
Rotasjonshastighet ved ekvator 1674,38 km/t
465,11 m/s
Aksehelning 23,439281°
Overflaterefleksjon 0,367
Overflatetemperatur
–minst
–gjennomsnitt
–maks

185 K
287 K
331 K
Atmosfæriske egenskaper
Atmosfærisk trykk 100 kPa
Sammensetning

77 % nitrogen
21 % oksygen
1 % argon
Små mengder karbondioksid og vanndamp

Tidsur hvor arkeikum (grått) og proterozoikum (blått) opptar nesten hele jordas historie. Viktige hendelser er tegnet inn.

Jorden eller Jorda (latin: Tellus eller Terra, symbol:Det astronomiske symbolet for Jorden), er den tredje planeten regnet fra solen. Det er den femte største planeten i solsystemet og planeten med størst tetthet, hvilket innebærer at dens gravitasjon kun overgås av Jupiter og Neptun. Jorden er den største av solsystemets fire steinplaneter, med en diameter litt større enn Venus' og omlag dobbelt så stor som Mars. Jordkloden blir også noen ganger omtalt som verden, den blå planeten, eller som Tellus («Jord») etter dens ene latinske betegnelse.

Som hjem for millioner av arter, inkludert mennesker, er jorden for tiden det eneste astronomiske objekt hvor man vet at det finnes liv. Forskere mener at planeten ble dannet for 4,6 milliarder år siden og at det oppstod liv på overflaten før det var gått en milliard år.[1] Jordens biosfære har hatt merkbar betydning for atmosfærens utvikling og andre abiotiske forhold på planeten, noe som har gjort det mulig for aerobe organismer å utbre seg. Dette har igjen ført til dannelsen av ozonlaget, som sammen med Jordens magnetfelt blokkerer for skadelig solstråling og dermed muliggjør liv på land. Jordens fysiske egenskaper, så vel som dens geologiske historie og banens plassering i forhold til solen, har tillatt liv på planeten å eksistere i mer enn tre milliarder år.

Jorden påvirker og påvirkes av andre objekter i rommet, spesielt av solen og månen. De geologiske prosessene styres av to energikilder: Jordens indre energi og varmeutvikling driver de indre prosessene med vulkanisme, jordskorpe- og bergartsdannelse, platetektonisk kontinentaldrift og havendring. Jordens tyngdekraft og Solens energi driver de ytre prosessene hvor vind og nedbør skaper erosjon, forvitring og sedimentær avsetning. På jordoverflaten møtes de indre og ytre geologiske kreftene og former de biologiske artenes livsmiljø.

For tiden foretar jorden et omløp rundt solen for hver 366,26 gang den roterer rundt sin egen akse, hvilket tilsvarer 365,26 solare dager, eller ett siderisk år. Jordens rotasjonsakse heller 23,4 grader i forhold til den rette vinkelen på Jordens omløpsbane rundt solen, noe som skaper årstidsvariasjoneer med en syklus på ett tropisk år (365,24 solare dager). Jordens eneste måne - månen - som begynte å gå i bane rundt jorden for omlag 4,5 milliarder år siden, bidrar med å skape tidevann, er stabiliserende for aksehelningen og bremser gradvis jordens rotasjon. Frem til om lag 3,8 milliarder år siden sørget en rekke nedslag av asteroider for betydelige endringer på jordens overflate.

Planetens mineraler og produkter fra biosfæren er ressurser som bidrar til å opprettholde menneskeheten. Befolkningen er delt inn i omtrent 200 selvstendige stater, som påvirker hverandre gjennom diplomati, reiser, handel og militære handlinger. Menneskehetens kulturer har gjennom tiden hatt mange ulike oppfatninger av jorden, deriblant personifisering av planeten som en guddom, overbevisninger om at jorden er flat og/eller at den er senteret i universet. I nyere tid hersker mange steder en erkjennelse av at jorden trenger menneskelig inngripen og tilpasning for at livsbetingelsene skal kunne bestå.

Kronologi[rediger | rediger kilde]

Geovitenskapene har bidratt med detaljert informasjon om jordens fortid. Den tidligst daterte materie i vårt solsystem ble dannet for mer enn 4,6 milliarder år siden, og for 4,6 milliarder år siden ble jorden og de andre planetene i solsytemet dannet fra en protoplanetarisk skive av støv og gass som var til overs etter dannelsen av solen. Sammensettingen av jordens materie skjedde raskt, i all hovedsak i løpet av 10-20 millioner år. Når kosmisk støv og steinmateriale først begynte å kollidere og danne jorden, økte denne nye planetens gravitasjonskraft som igjen aksellererte ytterligere tiltrekning av materie.[2] De stadige sammenstøtene og meteoritt-nedslagene utviklet stor varmeenergi, som bidro til å smelte ned steinmaterialet som utviklet seg til en indre kjerne av jern og et ytre lag av silikater. Etter hvert ble også det ytre laget separert i en tyngre mantel og en lettere jordskorpe. Det er vanlig å anta at tyngre mineraler sank ned i forhold til de lettere, men bergarter ble også trukket nedover eller oppover basert på deres evne til å binde seg med henholdsvis jern eller oksygen.[3]

Fra å være i smeltet tilstand, gikk jordens ytre lag over til en fast skorpe ved nedkjøling da vann ble akkumulert i atmosfæren. Jordskorpen var tynn og sprakk opp gang etter gang med en stor mengde vulkanutbrudd, og antakelig dannet det seg tidlig et samlet kontinent som så sprakk opp.[4] Månen ble dannet kort tid etterpå, for omlag 4,5 milliarder år siden. Den (2013) mest anerkjente teorien for dannelsen av månen er nedslagsteorien, som innebærer at månen ble dannet da et objekt på størrelse med Mars - noen ganger omtalt som Theia - tilsvarende omlag 10 % av jordens masse, kolliderte med jorden i et gigantisk sammenstøt. Denne teorien innebærer at dette objektet smeltet sammen med jorden, men at tilstrekkelig med materie til dannelsen av månen ble sendt i bane rundt jorden.

I tidlig arkeikum (4,6 – 4,0 mrd år siden) var jordas mantel svært varm, og litosfæren (jordskorpen) ytterst var så lett at den neppe sank ned i mantelen. Jordskorpa bestod av mye basalt og natriumrike masser. Natriumrike mantelmasser kunne noen steder trenge oppover i basaltkappen og danne kropper av kvartsrike dypbergarter – tonalitt, trondhjemitt og granodioritt (TTG). Horisontale smeltemasser ble til grønnsteinsbelter av omdannet basalt, ofte med magnesiumrik komatiitt, og ofte omgitt av tonalitt-gneis. Bergarter fra arkeisk tid er ikke preget av omsmelting gjennom nedsynking i mantelen, slik bergarter fra sen arkeikum og proterozoikum preges av. I proterizoikum ble bergartene også mer kaliumrike.

Siden omkring 1950 har geologer jaktet på de eldste bergartene. Høyeste kjente alder for bergarter er 3,96 milliarder år, mens sandstein funnet i Australia har klaster som har blitt datert til 4,1–4,2 milliarder år gamle. Radiometrisk datering av meteoritter og bergarter funnet på Månen har gitt aldre på opp til 4,56 milliarder år[5] og vi regner dette som et anslag på hvor gammel Jorden kan være. Grunnen til at vi ikke finner så gamle bergarter på jordkloden er at den i tidlig arkeikum var for varm til å starte den radiometriske klokka i bergartene, som brukes for å datere mineraler ved hjelp av halveringstider. Og selve kontinentene er ikke noen steder eldre enn omlag fire milliarder år, mens havbunnen fornyes kontinuerlig. Ingen havbunn regnes for å være eldre enn 200 millioner år.[6]

Atmosfæren[rediger | rediger kilde]

Smeltingen og krystalliseringen i arkeikum skapte gassutblåsninger, vanndamp og vulkansk aktivitet som bidro til jordas uratmosfære. Den ble fylt med helium og hydrogen som ble avgitt fra jorden, men hovedbestanden i uratmosfæren var svovel. De første organismene - prokaryoter - utviklet seg på denne tiden og «pustet» svovel i stedet for oksygen. Denne typen liv utviklet seg tilpasset den første, svovelholdige atmosfæren. Det eksisterer dog teorier om at atmosfæren hele tiden har hatt oksygen, siden tidlig arkeikum.[7]

For 3,8 milliarder år siden ble jorden (og månen) antatt utsatt for et nytt, kraftig meteoritt-bombardement som sammen med solvind rev bort den første atmosfæren. Bombardementet skapte intens varmeutvikling og vulkanisme, som nok en gang frigjorde nitrogen, karbondioksid og vanndamp. Disse elementene ble nå nedbrutt av ultrafiolett lys fra sola og omdannet til hydrogen, oksygen og ozon i en relativt oksygenfattig, ny atmosfære.[8] Vanndampen kondenserte og dannet havene for kanskje 4 milliarder år siden, godt hjulpet av is og flytende vann fra asteroider, protoplaneter, kometer og transneptunske objekt. Til tross for at solen utstrålte omlag 30 % mindre energi enn den gjør i dag, viser forskning at havene forble flytende, en selvmotsigelse formulert i den svake sols paradoks. En kombinasjon av drivhusgasser og økt solaktivitet bidro til økning av jordens overflatetemperatur, og forhindret at havene frøs over. Utviklingen av liv i havene etter relativt kort tid, avga oksygen som lagret seg i den nye atmosfæren.

Fotosyntese og fjellkjededannelser[rediger | rediger kilde]

Etter at havet oppstod for 4 milliarder år siden, var det etter hvert lite eller ingen landmasser på jorden. De første spor etter organismer (blågrønn- eller lignende bakterier) er ca. 3,6 milliarder år gamle. For 3,5 milliarder år siden ble jordens magnetfelt dannet, noe som forhindret solvind fra å bryte ned jordens nye atmosfære. I proterozoikum, før utviklingen av større dyr, var de grunne havområdene sannsynligvis dekket av matter dannet av mikroorganismer, ifølge professor David Bottjer. Da liv med evne til fotosyntese oppstod for mer enn 3,5 milliarder år siden,[9] ble det avgitt store mengder oksygen fra blant annet blågrønnbakterier, og dette bidro gradvis til å øke oksygeninnholdet i atmosfæren.

Den danske geologiprofessor Minik T. Rosing og kolleger ved Stanford University mener kontinentalskorpene oppstod i takt med anaerobt liv. Mangelen på landmasser skapte vesentlig sedimentære bergarter som skifer, konglomerat og kvartsitt i sen arkeikum. Når lava steg opp til overflaten gjennom basaltskorpen, ville den normalt avkjøles og størkne til tung basalt og gradvis synke ned i magmaen igjen, smelte ved 1100–1200 °C og stige opp for å størkne på ny, i en kontinuerlig geologisk prosess. Basalten gjennomgikk nå en økende oksydasjonsprosess og forvitret.

Basalt som er blitt forvitret av oksygen vil smelte ved «kun» 650 °C, utskilles og stige opp til overflaten der den størkner til langt lettere granitt, som finnes på samtlige kontinenter men er uhyre sjelden ellers i solsystemet. Relativt lett granitt la seg oppå den tyngre basalten og lot basaltsyklusen fortsetter under dekket av granitt, som forble stabilt og flytende. Vi har grunnfjell fra denne tiden i Norge, rester av en arkeisk fjellkjede finner vi i Lofoten med aldre opptil 3,3 milliarder år. Urbergarten granitt opptar for øvrig svært lite oksygen i friluft, og dette bidro derfor til stadig mer fritt oksygen i atmosfæren.

Overgangen til proterozoikum for ca. 2,5 mrd år siden virker dramatisk – atmosfæren ble oksygenrik, land-hav-fordelingen ble omtrent som idag, og historiens første istid oppstod. Områder som Karelia (Karelidene), Kola (Saamidene) og Slave-platen fløt trolig rundt løsrevet fra hnhv Baltica og Laurentia.[10] Kontinentplater samlet seg i et superkontinent - Columbia - for om lag 1,8 milliarder år siden[11] med betydelig fjellkjededannelse (orgoenese) som omfattet nær sagt alle dagens landmasser. Alle konkurrerende modeller antyder at Nord-Amerika (Laurentia) og Nord-Europa (Baltica) hang sammen i nord via Grønland slik det også skjedde siden.[12] Kontinentaldrift og havbunnsspredning med subduksjon skapte samtidig vulkansk aktivitet langs et større belte av den samlede kontinentalkysten, og magmatiske fjellkjeder oppstod i ytterkantene - Amazonas, Laurentia, Grønland og Baltica. Columbia brakk opp i en lang fragmenteringsprosess som varte fra kanskje 1,4 - 1,1 milliarder år siden[13]. Etterhvert rev enkelte kontinentbiter seg løs, slik som «Telemarkøya» i Sør-Norge, og i den sterke vulkanske prosessen omkfing 1,25 milliarder år siden som ga oppsplitting av Columbia, ble det dannet store mengder granitt, charnoktitt, mangeritt og anortositt.[14]

De tidlige havene inneholdt store mengder oppløst jern. Oksygenet som ble produsert gjennom fotosyntesen av mikroorganismene reagerte med jernet og ble felt ut som jernoksid. Dette foregikk over hundretalls millioner år, og et eksempel på sedimentær avsetning av lagvis kvartsitt og jern på havbunnen fra denne tiden er jernfeltene i Sør-Varanger. Da alt jernet var felt ut for ca. 2,2 milliarder år siden, lå det igjen er skorpe av rust på bunnen av verdenshavene som inneholder 20 ganger mer bundet oksygen enn hva vi i dag finner i fri form.[15] Først nå kunne det produseres et reelt overskudd av oksygen.

Tidlige blågrønnbakterier (cyanobakterier) avga oksygen og kjempet seg gjennom lag av kalkstøv som ble tykkere og dannet giftige «kalkhauger» kjent som stromatolitter, som fortsatt finnes i forstenet form. Det faktum at stromatolittene var giftige kan kanskje forklare hvorfor moderne eukaryoter (celleorganismer) ikke spredte seg nevneverdig før kaldt klima for 850-550 millioner år siden fortrengte stromatolittene og lot grønnalger og andre eukaryoter utvikle seg på grunn havbunn.[16] Etter at det økte oksygennivået tillot fremveksten av mer komplekse organismer, oppstod det arter som beitet på disse mattene eller gravde seg gjennom dem. Dette førte ifølge Bottjer til dannelsen av den type havbunn vi i dag er kjent med fra grunne forhold, og som består av sand, stein og revdannende organismer som koraller m.m.

I proterozoikum var de platetektoniske prosessene som idag, med oppstigning av vulkansk masse, og nedsynking av havbunnsskorpe med senere omdanning. De gamle, arkeiske kratonene fikk påvekst av ny kontinentalskorpe, slik som eksempelvis de svekonorvegiske massivene av proterozoisk grunnfjell i Sør-Norge og Sør-Sverige. Det baltiske skjoldet vokste i etapper gjennom vulkanisme, havbunnsspredning (sedimentære tillegg) eller Baltica-kontinentets kollisjon (fjellkjededannelse). Midt i Proterozoikum for om lag 1 mrd år siden samlet alle kontinentene seg igjen i et superkontinent - Rodinia. Det sprakk opp over en periode på 250 millioner år, fra 850 til 650 millioner år siden.[17]

Flercellet liv[rediger | rediger kilde]

Oksygennivået i atmosfæren fortsatte gradvis å stige. Med den økende oksygenkonsentrasjonen kunne det også danne seg et ozonlag som skjermet jorden for en del av solens UV-stråling. Begge deler (oksygen og lav UV-stråling) var forutsetninger for at det kunne oppstå mer avanserte livsformer. Flercellet dyreliv oppstod kanskje for så mye som 2 milliarder år siden, utfra funn av flercellet kull av ukjent opphav. De fleste forskere heller idag til koloniteorien, som postulerer at enkeltceller kom sammen for å forsvare hverandre mot andre celler eller av en annen grunn, og at enkelte av cellene i kolonien gradvis begynte å spesialisere seg til enkelte oppgaver.[18] For omlag 1 milliard år siden oppstod de første kjente, virkelige flercellede dyr – parmiadyrene – som er inntil 6 cm lange markliknende dyr kjent fra funn i Russland.

Mot slutten av proterozoikum, for mer enn 600 millioner år siden, ble en istid avløst av varmt klima og oversvømming med store, grunne havområder. Nå oppstod den såkalte ediacara-faunaen med blant annet de første bilaterale (symmetriske) dyr, hvorav Dickinsonia er blant de eldste kjente med funn fra Kvitsjøen. Mange steder oppstod nå plutselig primitive skalldyr ved overgangen til den kambriske eksplosjonen – hvor planter, sopp og kompliserte dyr oppstod nesten samtidig. For om lag 500 millioner år siden var ozon- og oksygennivåene i atmosfæren så høye at liv kunne utvikle seg også på landjorden. Det markerer overgangen til landorganismenes tidsalder - fanerozoikum.

Fremtid[rediger | rediger kilde]

Jorden vil i fremtiden bli varmere, fordi Solen utvikler seg. Magnetfeltet vil bli svekket, da kjernen blir nedkjølt. Når Solen eser ut før den slukner om ca. 4,5-5 milliarder år, vil Jorden og de andre indre planetene fordampe.

Jorden i solsystemet[rediger | rediger kilde]

Jorden er den tredje planeten i solsystemet og den eneste planeten hvor vann opptrer i alle former, noe som kan si at den er i den «tempererte» sonen av solsystemet.

Bane rundt Solen[rediger | rediger kilde]

Jorden går i en elliptisk bane rundt solen. Ett omløp rundt solen tar 365,2564 døgn – det såkalte sideriske år. Middelavstanden til solen er 150 millioner km. Avstanden varierer mellom 147 millioner km, som inntreffer omkring 3. januar, og 152 millioner km omkring 3. juli.

Over et tidsrom på ca. 100 000 år endrer banen form fra en tilnærmet sirkel til en ellipse. Denne variasjonen i banens eksentrisitet har betydning for innstrålt energimengde på ulike breddegrader, og er en medvirkende årsak til naturlige klimaendringer.

Aksens helning[rediger | rediger kilde]

Sommeren 2009 dannet jordaksen en vinkel på 66°3342,5 med baneplanet. For tiden øker denne vinkelen med ca. 0,46 buesekund pr. år. Denne aksehelningen er årsaken til at solvinkelen og dermed innstrålt energi varierer med årstidene. På høyere breddegrader enn nordlige og sydlige polarsirkel (66°3342,5 (sommeren 2009)) vil Solen ikke komme over horisonten eller være over horisonten i løpet av døgnet i en viss del av året. Mellom vendekretsene (23°2617,5 N og S (sommeren 2009)) vil Solen stå i senit midt på dagen to dager i året.

Jordaksens helning varierer mellom 67,9° og 65,5° over en periode på 41 000 år. I tillegg vil jordaksen over en periode på 23 000 år tegne en dobbelt kjegleflate – jordaksen «slingrer». Denne bevegelsen – presesjonen – gjør at Nordpolen over tid peker mot forskjellige punkter på himmelen. I dag peker aksen mot Polarstjernen, mens den om 12 000 år vil peke mot Vega.

Den samlete virkningen av de sykliske endringene i banens eksentrisitet, jordaksens helning og jordaksens slingring gir store nok endringer i innstrålt energi på ulike breddegrader til langt på veg å forklare tidligere klimasvingninger, istider og varmeperioder. Denne teorien ble første gang fremsatt av den jugoslaviske matematikeren Milutin Milanković.

Månen[rediger | rediger kilde]

Utdypende artikkel: Månen

Som den eneste av de terrestriske planetene har jorden en stor naturlig satellitt – Månen. Mars har også naturlige satellitter, men disse er små og muligens bare asteroider som er fanget i dens gravitasjonsfelt. For mer enn 4,5 milliarder år siden traff en stor protoplanet Jorda, og meteorskyen av knust materiale som oppstod begynte å kretse rundt jorda, samlet seg og dannet månen. I starten roterte månen svært nær jorda, men avstanden har gradvis økt. Siden månen er såpass stor og nær oss, har dens tyngdekraft stor påvirkning på Jorden. Det er hovedsakelig Månens tyngdekraft som er årsaken til tidevann.

Indre[rediger | rediger kilde]

Tverrsnitt av jordens indre, med kjernen (innerst) i grått og mantelen i oransje.

Forståelsen av Jordens indre utviklet seg for alvor da man begynte å måle forsinkelse i måten jordskjelvtrykk forplantet seg til ulike steder på kloden. Den tyske seismologen Beno Gutenberg brukte i 1913 denne metoden for å anslå den indre, faste kjernens diameter. Den kroatiske seismologen Andrija Mohorovicic studerte et kraftig jordskjelv i 1909, og oppdaget en grense (kalt «Moho») mellom jordskorpen og den dypere mantelen.[19] Snart innså forskere at Jorden bestod av en fast kjerne i midten, en flytende mantel av smeltet lava, og jordskorpen. Den danske seismologen Inge Lehmann oppdaget i 1936 at kjernen av jern og nikkel var fast innerst, og flytende ytterst i laget under mantelen. Det er også fastslått at overgangen fra litosfære til mantel på 440 km dyp, og overgangen til indre mantel på 670 km dyp, markerer faseoverganger i silikater som øker bølgebevegelsenes fart betydelig, noe som skaper referansedybder for en detaljert kartlegging av mantelen ved hjelp av seismografiske apparater. Bølgehastigheten påvirkes også av temperaturavvik slik at man kan påvise lavastrømmer seismologisk.[20]

Jordens indre skaper varme i kjernen, og gjennom kjernefysisk nedbryting av av radioaktive grunnstoff i både mantelen og jordskorpen.[21] For hver km innover øker temperaturen med ca. 30°C.Jordas indre varme bidrar til vulkanisme, og vanndamp og CO2 bidrar til en drivhuseffekt som muliggjør livet på Jorda.

Jorden består av følgende lag:

  • Indre fast kjerne av hovedskelig jern, med en radius av 1 220 km. Den starter således på 5 150 km dyp og går ned til jordens sentrum på 6 371 km dyp. Temperaturen er jevnt 5 000°C, mens tettheten er ca. 12 g/cm³.
  • Ytre flytende kjerne av jern og nikkel, med en tykkelse på 2 260 km som strekker seg fra 2 890 km dybde til 5 150 km dybde. Temperaturen øker med dybden fra 3 370°C til 5 000°C og tettheten i den flytende kjernen øker fra 10,0 g/cm³ til 11,5 g/cm³.
  • Nedre mantel av flytende stein (periodotitt), med en tykkelse på 2 190 km som strekker seg fra 700 km dybde til 2 890 km dybde. Temperaturen øker med dybden fra 1 650°C til 3 370°C og tettheten i den nedre mantelen øker fra 4,4 g/cm³ til 5,5 g/cm³.
  • Øvre mantel av flytende stein, med en tykkelse på 600-670 km som strekker seg fra 30-100 km dybde og ned til 700 km dybde. Temperaturen øker med dybden fra 1 250°C til 1 650°C og tettheten i den øvre mantelen øker fra 3,0 g/cm³ til 4,4 g/cm³. Øvre mantel er igjen inndelt i to lag med grense på 70-400 km dyp: Astenosfæren nederst og øverst Litosfæren hvor øverste mantel står i direkte kontakt med jordskorpen langs Moho-linjen. Grensen mellom Litosfære og Astenosfære markerer en temperaturgrense hvor temperaturen øker fra 1 250°C til 1 450°C. Det skjer faseoverganger i silikater i mantelen ved 440 km og 670 km dybde, og dette øker trykkbølgers hastighet.
  • Jordskorpe av fast stein, med en tykkelse på 30-100 km og inndelt i flere stive segmenter, kalt tektoniske plater som migrerer over jordens overflate i perioder på flere millioner år. Jordens kontinentalskorpe er tykkest med en 30-70 km andel av litosfæren – basalt nederst og andre bergarter øverst. Klodens havbunnsskorpe er bare 5-15 km tykk med basalt nederst, og dekket av et relativt ungt lag av sedimenter. Jordskorpens tetthet varierer med dybden fra omlag 2,7 g/cm³ til 3,0 g/cm³ ved Moho-grensen.

Fra mantelen kan smeltet stein stige opp til overflaten og danne såkalte varmeflekker under jordskorpen, som under Hawaii og under Island. Varmeflekkene presser jordskorpen opp der hvor de oppstår. På den andre siden kan stykker av størknet litosfæreplate synke ned gjennom hele mantelen og ned til den ytre kjernen på 2 890 km dybde.

Overflate[rediger | rediger kilde]

Av Jordens overflate på 510 mill. km² er 362 mill. km² (over 71 %) dekket av hav

Den ytre delen av jordoverflaten kalles litosfæren, den består av hard, stiv masse, men også øvre deler av mantelen. Litosfæriske plater er bevegelig masse, som drives av platetektonikk. Tykkelsen på litosfæren kan være 100–400 km, noe som varier ved om vi har kontinental eller osean litosfære. Den øvre delen av litosfæren består av jordskorpen, dette er Jordens ytterste skall som vi mennesker beveger oss på.

Vi deler inn jordskorpen i oseanskorpe (tykkelse: 7–10 km, består i hovedsak av basalt og gabbro) og kontinentalskorpe (tykkelse: 25–70 km). Kontinentalskorpen består generelt sett av bergarter med lavere tetthet enn oseanskorpen. Arkimedes' prinsipp og tykkelsen på skorpene gir oss da en forklaring på hvorfor kontinentalskorpen flyter lettere eller ligger høyere enn oseanskorpen. Jordens indre forsyner jordoverflaten med i snitt 87 milliwatt energi per kvadratmeter (den samlete fotosyntese på Jorden forsyner overflaten med nærmere fem ganger så mye energi).

Omlag 71 % av overflaten er dekket av saltvannshav, resten er kontinenter og øyer. Disse innehar innsjøer og elver som også bidrar til hydrosfæren. Flytende vann er nødvendig for opprettholdelsen av alle kjente former for liv, og man kjenner ikke til andre planeter med flytende vann og vanndamp. Jordens poler er for det meste dekket av is (Arktis, Antarktis og sjøis).

Fysiske særtrekk[rediger | rediger kilde]

Verdenskart 2005.
Jorden er delt inn i 24 tidssoner.
FNs regioninndeling av verden.

Atmosfære[rediger | rediger kilde]

Utdypende artikkel: Jordens atmosfære

Jorden er dekket av et lag av gasser – en atmosfære – som holdes på plass av tyngdekraften. Denne gassblanding, som hovedsakelig består av nitrogen og oksygen, kalles også luft. Atmosfæren bidrar til å gjøre livet på landjorden mulig ved at organismer tar opp viktige gasser fra luften, ved å absorbere den ultrafiolette strålingen og ved å utjevne temperaturforskjellene mellom dag og natt. I tillegg bidrar den til å heve temperaturen på Jorden gjennom drivhuseffekten.[22] Temperaturforskjeller og jordrotasjonen gjør at luften i atmosfæren er i konstant bevegelse, noe som bidrar til å frakte varme rundt om på planeten.

Klima[rediger | rediger kilde]

Se også Klima

Jorden kan deles inn i klimasoner med felles klimatiske egenskaper. En første grovinndeling, som hovedsakelig tar utgangspunkt i temperatur- og lufttrykkforhold skiller mellom fire hovedklimasoner:

Magnetfelt[rediger | rediger kilde]

Jorden er som en stor magnet og danner et magnetfelt rundt seg. Magnetfeltet beskytter livet på Jorden fra kosmisk stråling. Det er magnetfeltet som gjør at vi får en magnetisk nordpol og en motsvarende sydpol.

Ekstreme punkt[rediger | rediger kilde]

Høydeforskjeller

Se også[rediger | rediger kilde]

Referanser[rediger | rediger kilde]

  1. ^ Ivar B Ramberg (red), Landet blir til – Norges geologi, Norsk Geologisk Forening 2006, utg 2007, side 23.
  2. ^ Angeles Gavira og Peter Frances (red), Rocks and Minerals, Dorling Kindersley / Smithsonian Institution, 2005, utgave 2008, side 12.
  3. ^ Angeles Gavira og Peter Frances (red), Rocks and Minerals, Dorling Kindersley / Smithsonian Institution, 2005, utgave 2008, side 12 og 15.
  4. ^ Steinar Skjeseth, Norge blir til, Schibsted, Oslo 1974, andre reviderte opplag 2002, side 9-11.
  5. ^ Angeles Gavira og Peter Frances (red), Rocks and Minerals, Dorling Kindersley / Smithsonian Institution, 2005, utgave 2008, side 14.
  6. ^ Frank H T Rhodes (red), Geology, St Martin's Press, New York 1972, utg 1991, side 9.
  7. ^ Harry Clemmey og Nick Badham, «Oxygen in the Precambrian Atmosphere», i Geology nr 10 (3), 1982, side 141–146
  8. ^ Angeles Gavira og Peter Frances (red), Rocks and Minerals, Dorling Kindersley / Smithsonian Institution, 2005, utgave 2008, side 15.
  9. ^ Ramberg, Ivar (red), Landet blir til – Norges geologi. 2007, side 23.
  10. ^ L.J.Pesonen et al, «Paleo-Mesoproterozoic Supercontinents – A Paleomagnetic View», Geophysica nr 48 1-2, 2012, side 5-47.
  11. ^ Shihong Zhang et al, «Pre-Rodinia supercontinent Nuna shaping up: A global synthesis With New paleomagnetic results from North China», Earth and Planetary Science Letters 353–354, 2012, side145–155.
  12. ^ Rogers 1996, Hoffman 1997, Rogers og Santosh 2002, Meert 2002, Zhao et al 2004, 2011.
  13. ^ Shihong Zhang et al, «Pre-Rodinia supercontinent Nuna shaping up: A global synthesis With New paleomagnetic results from North China», Earth and Planetary Science Letters 353–354, 2012, side145–155.
  14. ^ Zhao, Guochun, m.fl, «A Paleo-Mesoproterozoic supercontinent: assembly, growth and breakup», i Earth-Science Reviews, nr 67, 2004, side 91–123.
  15. ^ N. J. Planavskyet al, «Widespread iron-rich conditions in the mid-Proterozoic ocean», Nature nr 477, 2011, side 448–451.
  16. ^ Ivar B Ramberg (red), Landet blir til – Norges geologi, Norsk Geologisk Forening 2006, utg 2007, side 69.
  17. ^ Z. X. Li og D.A.D. Evans, «Late Neoproterozoic intraplate rotation within Australia allows for a tighter-fitting and longer-lasting Rodinia», Geology, nummer 39, 2011, side 39–42.
  18. ^ Ivar B Ramberg (red), Landet blir til – Norges geologi, Norsk Geologisk Forening 2006, utg 2007, side 69.
  19. ^ Ivar B Ramberg (red), Landet blir til – Norges geologi, Norsk Geologisk Forening 2006, utg 2007, side 25.
  20. ^ Ivar B Ramberg (red), Landet blir til – Norges geologi, Norsk Geologisk Forening 2006, utg 2007, side 25.
  21. ^ Ivar B Ramberg (red), Landet blir til – Norges geologi, Norsk Geologisk Forening 2006, utg 2007, side 24.
  22. ^ Kristin Straumsheim Grønli (14. november 2003). «Jordkloden som et drivhus». forskning.no. Besøkt 11. juli 2009. 

Eksterne lenker[rediger | rediger kilde]

Commons-logo.svg Commons: Kategori:Earth – bilder, video eller lyd