Tetthetsfunksjon

Fra Wikipedia, den frie encyklopedi
Hopp til: navigasjon, søk
Sannsynlighetstettheten for en normalfordeling med forskjellige standardavvik.

Tetthetsfunksjonen (også kalt sannsynlighetstettheten eller frekvensfunksjonen) brukes i statistikken til å gi et bilde av hvor sannsynlige ulike resultater er i forhold til hverandre, til forskjell fra fordelingsfunksjonen som gir sannsynligheten for å komme til venstre for et gitt punkt xtallaksen.

Kontinuerlig[rediger | rediger kilde]

For en kontinuerlig stokastisk variabel beskriver tetthetsfunksjonen, f, sannsynligheten for at variabelen skal anta verdien mellom a og b gjennom formelen

Dette innebærer at tetthetsfunksjonen matematisk kan defineres som den deriverte av den kumulative fordelingsfunksjonen F(X):


Diskret[rediger | rediger kilde]

Betingelser[rediger | rediger kilde]

For å kunne beskrive en virkelig sannsynlighetsfordeling må følgende gjelde for tetthetsfunksjonen:

  1. Ikke-negativ langs hele den reelle tallaksen
  2. Integralet av funksjonen, over hele aksen, må bli 1.

Se også[rediger | rediger kilde]