Bølge

Fra Wikipedia, den frie encyklopedi
Hopp til: navigasjon, søk
Utslaget i en harmonisk bølge ved et gitt tidspunkt vaierer som en sinuskurve med avstanden.

En bølge er en forstyrrelse eller utslag som sprer seg gjennom rommet med konstant hastighet og dermed overfører energi. Mens lydbølger og vannbølger brer seg i et medium, sprer elektromagnetisk stråling og gravitasjonsbølger seg gjennom vakuum med lyshastigheten.

De fleste bølger lar seg klassifisere som longitudinalbølger eller transversalbølger avhengig av om utslaget er langs eller vinkelrett på utbredelsesretningen. En lydbølge i en gass er longitudinal, mens en elektromagnetisk bølge er transversal. Lydbølger i et fast stoff kalles for seismiske bølger og er en blanding av både transversal og longitudinal bevegelse.

Utbredelsen til alle bølger beskrives ved en bølgeligning. For bølger med en konstant utbredelseshastighet, har denne vanligvis samme, matematiske form og beskriver «ikke-dispersive bølger». Når dette ikke er tilfelle, snakker man om «dispersive bølger». Havbølger er et viktig eksempel på slike. Mer abstrakte bølger av denne typen benyttes i kvantemekanikken og deres utbredelse er gitt ved Schrödingerligningen.

Spesielt viktig er harmoniske bølger hvor forstyrrelsen i hvert punkt i rommet varierer med tiden som for en harmonisk oscillator. En slik bølge har derfor en bestemt frekvens og får dermed også en bestemt bølgelengde. Den har en form i tid og rom som er gitt ved en sinuskurve. En hvilken som helst annen bølge kan fremstilles som en sum (eller integral) av harmoniske bølger, hver med sin egen frekvens. Dette danner grunnlaget for Fourier-analysen som er av meget stor betydning innen fysikk og teknologi.

Bølgeligningen[rediger | rediger kilde]

Utbredelsen av en bølge er beskrevet ved bølgeligningen. Vanligvis tenker man seg en bølge med uendelig utstrekning, men den kan også bestå av en enkel forstyrrelse eller «bølgepakke» som brer seg utover med konstant hastighet. Et typisk eksempel er en havbølge med form av en tsunami. Beveger bølgen seg i en dimensjon, vil den matematisk være beskrevet ved en funksjon F(t,x)  hvor t  er tiden og x koordinaten i utbredelsesretningen. Er v bølgens hastighet, vil en person som forflytter seg med samme hastighet, oppleve å se at bølgeformen ikke forandrer seg med tiden. Da denne observatøren har koordinaten x' , vil han derfor si at bølgen er beskrevet ved en konstant funksjonen f (x' ). Men nå er x' = x - vt hvis observatøren begynner sin reise ved tidspunktet t = 0. Derfor er bølgen beskrevet ved «bølgefunksjonen» F = f (x - vt) når den beveger seg i positiv x-retning.[1] Hadde den beveget seg i motsatt retning, ville man benytte en funksjon F = g (x + vt). Argumentet x ± vt  kalles bølgens fasefunksjon og størrelsen v blir da mer nøyaktig omtalt som fasehastigheten.

Bølgepulsen beveger seg langs en streng og blir reflektert i endepunktene.

De aller fleste bølger «lineære» i den forstand at hvis to kilder forårsaker bølgene F1(t,x) og F2(t,x), så vil den totale forstyrrelsen i punktet x ved tidspunktet t være F1(t,x) + F2(t,x). Dette gir opphav til interferens som er en fundamental egenskap ved all bølgebevegelse. Det betyr at når bølgene F1 og F2 oppfyller bølgeligningen, må også summen F = F1 + F1 oppfylle den.

Som alle andre bevegelsesligninger må også bølgeligningen være en differensialligning som inneholder deriverte med hensyn på de to variable t og x. Denne ligningen kan finnes ved å betrakte den resulterende bølgen

som oppstår i møtet mellom to motgående bølger. Ved å innføre u1 = x - vt  og u2 = x + vt, blir da F/∂x = f 1' + f 2' og F/∂t = - vf 1' + vf 2' hvor apostrofen betyr den deriverte med hensyn på det ene argumentet u1 eller u2. For dispersive bølger kan man ikke finne noen generell forbindelse mellom disse to partiellderiverte som er uavhengig av bølgeformene f 1  og f 2. Derimot hvis utbredelseshastigheten til bølgene er uavhengig av deres form, vil de tilsvarende andrederiverte 2F/∂t 2 og 2F/∂x 2 være forbundet ved sammenhengen[2]

Dette er bølgeligningen i en dimensjon for en ikke-dispersiv bølge. For en bølge F(t,x,y,z)  som kan bre seg ut i tre dimensjoner med samme hastighet i alle retninger, vil da bølgeligningen bli

Kombinasjonen av partiellderiverte inni parentesen er Laplace-operatoren. Den kan skrives mer kompakt ved bruk av nabla-symbolet slik at bølgeligningen i tre dimensjoner kan skrives på den alternative formen

Denne partielle differensialligningen for en svingende streng ble først utledet av Jean le Rond d'Alembert på midten av 1700-tallet. Kort tid etterpå fant Leonhard Euler bølgeligningen i tre dimensjoner.[3]

Harmoniske bølger[rediger | rediger kilde]

Utslaget på et bestemt punkt i en harmonisk bølge som her beveger seg mot høyre, varierer periodisk med tiden.

Formen til en bølge som beveger seg til høyre langs x-aksen, er gitt ved bølgefunksjon f(u) hvor u = x - vt. Når denne funksjonen er en sinuskurve, sies bølgen å være harmonisk. Da er f(u) = A cos(k(x - vt))  hvor konstanten A kalles amplituden til den harmoniske bølgen og konstanten k er dens bølgetall. Betrakter man bølgen ved et gitt tidspunkt t0, vil da utslaget variere som A cos(kx - φ0)  hvis man skriver φ0 = kvt0. Det vil derfor være det samme i et punkt x som i et punkt x + λ hvor = 2π  da sinusfunksjonen er periodisk med periode 2π . Dette gir sammenhengen

mellom bølgetallet k  og bølgelengden λ. Ved et gitt tidspunkt er derfor utslaget til bølgen det samme i alle punkt med en gjensidig avstand som er et helt antall bølgelengder.

På samme måte, hvis man betrakter bølgen i et punkt x0  i rommet, så vil utslaget der variere som A cos(kvt - θ0)  der θ0 = kx0. Det tilsvarer at i dette punktet varierer utslaget harmonisk med vinkelfrekvensen

Den normale frekvensen f = ω/2π  er derfor relatert til bølgelengden ved den viktige sammenhengen

som kan betraktes som en definisjon av fasehastigheten.

Bølgefunksjonen for en harmonisk bølge som beveger seg mot høyre, kan nå skrives på den generelle formen

hvor fasevinkelen φ  avhenger av hvordan bølgen ser ut ved tidspunktet t = 0. Vanligvis kan denne settes lik null. Men hvis flere slike bølger opptrer samtidig, er disse relative fasevinklene avgjørende som ved interferens.

Stående bølger[rediger | rediger kilde]

Utslaget til en harmonisk bølge varierer i hvert punkt periodisk med vinkelfrekvensen ω. Den må derfor ha den generelle formen F(t,x) = U(x) cosωt  hvis man setter fasevinkelen i den periodiske funksjonen lik null. Innsatt i bølgeligningen gir dette

hvor igjen k = ω/v. Dette er igjen svingeligningen for en harmonisk oscillator med den generelle løsningen U = A sinkx + B coskx. Her må integrasjonskonstantene A og B bestemmes fra grensebetingelsene for bølgen. En harmonisk bølge i en dimensjon har derfor den generelle formen

Ved bruk av forskjellige identiteter for produkter av sinus- og cosinusfunksjoner, kan dette uttrykket skrives om som en sum av fire bølger med forskjellige faser og amplituder som beveger seg i motsatt retning.[4]

En stående bølge (svart) med noder i de røde punktene. Den fremkommer som en sum av to motgående bølger (rød og blå) med samme bølgelengde.

I dette spesielle tilfellet at A = 0 eller B = 0 vil den resulterende bølgen ha faste punkt i rommet hvor utslaget alltid er null. Slike punkt kalles for noder og man sier at de karakteriserer en «stående bølge». For eksempel, bølgen

har noder i punktene bestemt ved kxn =   hvor n = 0,1,2,3, etc. Den består av to motgående bølger med samme amplitude. Ved å innføre bølgelengden λ = 2π/k, kan lokaliseringen til nodene skrives xn = /2.

Stående bølger benyttes til å gi musikkinstrumenter bestemte toner. Mens svingende streng har noder der den blir holdt fast og dermed ikke kan svinge, vil luftsøylen i et blåseinstrument ha noder som er bestemt ved ventilenes plassering. Ved å åpne og lukke disse, eksiteres forskjellige stående bølger som gir musikalske toner.

Plane bølger[rediger | rediger kilde]

Den harmoniske bølgen F(t,x) = A cos(kx - ωt)  kan også betraktes som en plan bølge som beveger seg mot høyre og fyller hele rommet. Ved et gitt tidspunkt er da utslaget det samme i hvert plan x = konstant. Alternativt kan den skrives som F(t,x) = A cos(kx - ωt)  når man innfører bølgevektoren som her er k = kex og viser at bølgen beveger seg langs x-aksen angitt ved enhetsvektoren ex.

En slik plan bølge

med samme bølgetall, men som beveger seg i en vilkårlig retning gitt ved enhetsvektoren n, vil ha en fast bølgevektor k = kn = (kx, ky, kz). Ved et gitt tidspunkt vil den ha samme utslag i alle punkt i rommet som ligger på planet kx = kxx + kyy + kzz = konstant. Dette planet beveger seg med konstant hastighet v  i retning av bølgevektoren k. Den er en løsning av den tredimensjonale bølgeligningen når betingelsen

er oppfylt. Størrelsen til bølgevektoren er derfor fremdeles gitt ved bølgetallet k = |k| = 2π /λ.

I mange sammenhenger er det praktisk å beregne egenskaper ved bølger som om utslagene kunne ta komplekse verdier. Ved bruk av Eulers formel kan man da skrive en plan bølge som

hvor man tar «realdelen» av den komplekse eksponensialfunksjonen. Ofte er dette underforstått slik at bølgefunksjonen skrives uten at Re angis.[5]

Kvantemekanikk[rediger | rediger kilde]

Mens fysiske bølger er beskrevet ved reelle bølgefunksjoner, benyttes komplekse bølgefunksjoner Ψ = Ψ(t,x)  i kvantemekanikken til å beskrive partikler. Disse har i seg selv ingen direkte fysisk betydning, men produktet Ψ*Ψ angir sannsynligheten for å finne en partikkel i punktet x ved tidspunktet t. Her er Ψ* den komplekskonjugerte av funksjonen Ψ. Disse abstrakte bølgene omtales ofte som materiebølger og er beskrevet ved Schrödinger-ligningen. For en fri partikkel med masse m er den

hvor i = √-1  er den imaginær enhet og er Planck-Dirac-konstanten. Denne bølgeligningen har en annen form da disse bølgene ikke uten videre kan tilordnes en bestemt bølgehastighet slik at de i alminnelighet er dispersive.

Den plane bølgen

er den enkleste løsningen av Schrödinger-ligningen.[6] Her er igjen k bølgevektoren og ω er vinkelfrekvensen som ikke lenger er forbundet via en bølgehastighet. Derimot er partikkelens impuls gitt som og dens energi som nå istedet oppfyller den klassiske sammenhengen .

For denne løsningen av Schrödinger-ligningen er produktet Ψ*Ψ uavhengig av posisjonen x til partikkelen. Det betyr at når den har en bestemt impuls p, er sannsynligheten den samme for å finne den i hvilket som helst punkt i rommet. Dette er et uttrykk for Heisenbergs uskarphetsrelasjon som gjør kvantemekanikk så vanskelig å sammenholde med klassisk fysikk.

Sfæriske bølger[rediger | rediger kilde]

Animasjon av todimensjonale bølger som beveger seg ut fra en punktkilde.

En sten som kastes ut i et vann, forårsaker vannbølger som brer seg radielt utover med bølgetopper som danner sirkler. Tilsvarende vil en liten lydkilde skape lydbølger som brer seg utover i luften med bølgetopper som danner kuleflater. Disse bølgene kalles «sfæriske bølger» eller kulebølger og har mange praktiske anvendelser.

De beskrives mest naturlig ved bruk av kulekoordinater slik at den generelle bølgefunksjonen for en harmonisk bølge har formen F(t,x) =U(r,θ,φ) cosωt. Innsatt i bølgeligningen vil derfor den romlige delen av funksjonen måtte oppfylle

hvor bølgetallet k = ω/v. For de mest symmetriske bølgene avhenger denne funksjonen bare av den radielle variable r. Ved å benytte Laplace-operatoren i kulekoordinater, kan da ligningen forenkles til[5]

Funksjonen rU oppfyller derfor svingeligningen for en harmonisk oscillator slik at den generelle løsningen har formen

Den beskriver i alminnelighet en sum av «inngående» og «utgående» kulebølger av formen (1/r) cos(kr ± ωt). Kan utslaget ta komplekse verdier, vil den utgående bølgen ha formen[6]

Amplituden avtar derfor med avstanden fra kilden. På samme måte forklares blant annet hvorfor signalet fra en radiosender blir svakere etterhvert som man beveger seg bort fra den. Dette kan forstås ved at energien som sendes ut i bølger, spres over et stadig større område slik at intensiteten gradvis svekkes.

Se også[rediger | rediger kilde]

Referanser[rediger | rediger kilde]

  1. ^ N.P. Callin, C.W. Tellefsen, S. Haagensen, J. Pålsgård og R. Stadsnes, ERGO Fysikk 2, Aschehoug, Oslo (2008). ISBN 9788203337208.
  2. ^ J.B. Marion and W.F. Hornyak, Physics for Sciences and Engineering, Holt-Saunders International Editions, New York (1982). ISBN 4-8337-0098-0.
  3. ^ M. Kline, Mathematical Thought from Ancient to Modern Times, Oxford University Press, Osford (1972). ISBN 0-19506136-5.
  4. ^ H.D. Young and R.A. Freedman, University Physics, Addison Wesley, New York (2008). ISBN 978-0-321-50130-1.
  5. ^ a b D.J. Griffiths, Introduction to Electrodynamics, Prentice Hall, New Jersey (1999). ISBN 0-13-805325-X.
  6. ^ a b R.A. Serway, C.J. Moses and C.A. Moyer, Modern Physics, Saunders College Publishing, Philadelphia (1989). ISBN 0-03-004844-3.