Eksakte trigonometriske konstanter

Fra Wikipedia, den frie encyklopedi
Hopp til: navigasjon, søk
I en regulær n-kant er a = π/n den halve sentralvinkel og b = π(1/2 - 1/n) den halve, indre vinkel.
Trigonometri

Historie

Anvendelser

Hypotenus

Funksjoner

Inverse funksjoner

Referanse

Identiteter

Eksakte konstanter

Trigonometriske tabeller

Setninger

Sinussetningen

Cosinussetningen

Tangenssetningen

Pythagoras' læresetning

Kalkulus

Integraler av funksjoner

Deriverte av funksjoner

Integraler av inverse funksjoner

Eksakte trigonometriske konstanter er eksakte verdier som brukes for å uttrykke vinkler nøyaktig. Alle konstantene er utledet fra forholdet mellom to sider i en trekant.

Alle eksakte verdier av sinus, cosinus og tangens til vinkler med 3-graders inkrementer er det mulig å utlede ved å bruke identitetene for halve vinkler, dobbelte vinkler og sum/differanse med verdiene for 0°, 30°, 36°, og 45°. Det tilsvarer at de er konstruerbare tall og basert på konstruksjon av regulære mangekanter. Disse spesielle vinklene som er listet, er de halve sentralvinklene i de tilsvarende mangekantene. Det er kun mulig å finne eksakte verdier for vinkler på formen m πn (gitt i radianer), der m og n er heltall slik at det går an å konstruere et polygoner med n eller m sider.

Konstantene oppgis på eksakt form, dvs. ved hjelp av røtter og brøker, uten avrunding til desimaltall, som kan lede til unøyaktigheter dersom man bruker de i videre beregninger. Mange av verdiene er irrasjonelle. Dersom man evaulerer funksjonene og med et rasjonalt argumenter, er de eneste mulige rasjonale løsningene 0, ±1 og ±12.

Velkjente konstanter[rediger | rediger kilde]

Eksakte verdier på formen enhetssirkelen; alle disse er et multiplum av 30° og 45° (π6 og π4).

Følgende konstanter kan utledes for verdier ut fra en sekstendeling av enhetssirkelen; disse gjelder for verdiene man får av å dele en sirkel i åtte eller tolv like deler. Én hel omdreining er gitt ved 360° eller .

Dreining Grader Radianer Sinus Cosinus Tangens
0 0 0 1 0
112 30° π6 12 32 33
18 45° π4 22 22 1
16 60° π3 32 12 3
14 90° π2 1 0
13 120° 2π3 32 12 3
38 135° 3π4 22 22 −1
512 150° 5π6 12 32 33
12 180° π 0 −1 0
712 210° 7π6 12 32 33
58 225° 5π4 22 22 1
23 240° 4π3 32 12 3
34 270° 3π2 −1 0
56 300° 5π3 32 12 3
78 315° 7π4 22 22 −1
1112 330° 11π6 12 32 33
1 360° 2π 0 1 0

Andre verdier[rediger | rediger kilde]

Verdier for vinkler utenfor området [0°, 45°] kan utledes fra disse verdiene ved bruk av formlene for symmetri i trigonometriske identiteter. Merk at 1° = π/180 radianer.

0°: fundamental[rediger | rediger kilde]

3°: 60-sidet polygon[rediger | rediger kilde]

6°: 30-sidet polygon[rediger | rediger kilde]

9°: 20-sidet polygon[rediger | rediger kilde]

12°: 15-sidet polygon[rediger | rediger kilde]

15°: dodekagon[rediger | rediger kilde]

18°: dekagon[rediger | rediger kilde]

21°: summen 9° + 12°[rediger | rediger kilde]

22.5°: oktogon[rediger | rediger kilde]

24°: summen 12° + 12°[rediger | rediger kilde]

27°: summen 12° + 15°[rediger | rediger kilde]

30°: heksagon[rediger | rediger kilde]

33°: summen 15° + 18°[rediger | rediger kilde]

36°: pentagon[rediger | rediger kilde]

39°: summen 18° + 21°[rediger | rediger kilde]

42°: summen 21° + 21°[rediger | rediger kilde]

45°: kvadrat[rediger | rediger kilde]

60°: trekant[rediger | rediger kilde]

der er det gylne snitt.

Se også[rediger | rediger kilde]

Referanser[rediger | rediger kilde]

Eksterne lenker[rediger | rediger kilde]