Kvadrattall

Fra Wikipedia, den frie encyklopedi
Hopp til navigering Hopp til søk
16 kuler danner et kvadrat hvor hver sidekant har 4 kuler.

Et kvadrattall er det positive heltallet som oppstår når et heltall multipliseres med seg selv. Eksempelvis er 25 et kvadrattall ettersom 5 · 5 = 25. En annen, vanlig skrivemåte er potensformen 52 som sies å være «fem opphøyd i to» eller «fem i kvadrat». De første kvadrattallene er

1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400, 441, 484, 529,....

Navnet kvadrattall skyldes at et slikt antall prikker eller kuler kan arrangeres som et geometrisk kvadrat. Det betyr at det n-te kvadrattallet har n prikker eller kuler i sine sidekanter. Disse tallene danner en klasse av figurtall på samme måte som trekanttallene og andre polygontall.

Kvadratet av et liketall er alltid et liketall, mens kvadratet av et oddetall alltid er et oddetall.

Aritmetiske egenskaper[rediger | rediger kilde]

Det n-te kvadrattallet Kn kan skrives som en sum av de n første oddetallene. For eksempel, så er

Da det n-te oddetall er 2n + 1, tilsvarer denne egenskapen ved kvadrattallene den rekursive sammenhengen

Ved å benytte at K1 = 1, kan alle kvadrattallene herav beregnes ved addisjon. Rekursjonsrelasjonen kan også illustreres geometrisk ved figurene

Square number 1 with gnomon.svg Square number 4 with gnomon.svg Square number 9 with gnomon.svg Square number 16 with gnomon.svg

hvor oddetallet som legges til, er gitt ved de blå kulene. Dens riktighet følger også algebraisk fra definisjonen Kn = n 2 som betyr at

Sammenheng med trekanttall[rediger | rediger kilde]

Summen av de to påfølgende trekanttallene 10 og 15 gir kvadrattallet 25.

Hvert kvadrattall kan skrives som summen av et trekanttall og det foregående trekanttallet, det vil si

Det følger lett fra den algebraiske sammenhengen

og kan geometrisk illustreres ved å arrangere kulene i de to trekantene med sidekanter n og n - 1 til å utgjøre et kvadrat med sidekant n.

Trekanttallene kan også benyttes til å utlede formelen for summen av de n første kvadrattallene. Den er

Denne formelen for summen er samtidig det n-te, pyramidetallet basert på en pyramide med kvadratisk grunnflate. Det kan bevises ved induksjon ved at

Da formelen er riktig for n = 2, vil den derfor være riktig for alle større verdier av n.

Geometrisk tilsvarer denne rekursjonsrelasjonen at summen Sn  representerer antall kuler i en slik pyramide bestående av n lag med kvadrat hvor hvert kvadrat har sidelengder fra 1 til n. Den kan bygges opp fra en pyramide med Sn - 1  kuler ved å tilføye en ny, kvadratisk grunnflate med n 2 kuler.

Litteratur[rediger | rediger kilde]

  • A. Søgaard og R. Tambs Lyche, Matematikk III for realgymnaset, Gyldendal Norsk Forlag, Oslo (1955).
  • A. Holme, Matematikkens Historie 1, Fagbokforlaget, Bergen (2001). ISBN 82-7674-678-0.