Portal:Energi/Utvalgt artikkel/september

Fra Wikipedia, den frie encyklopedi
Fusjonsreaksjon med deuterium-tritium (D-T) betraktes som den mest lovende teknologien for fusjonskraftverk.

I fysikken, er kjernefysisk fusjon en prosess der flere atomkjerner smelter sammen og danner en tyngre atomkjerne. Dette medfører frigjøring eller opptak av energi som avhenger av atomkjernenes masser. Jern og nikkel har den høyeste bindingsenergien per nukleon og er derfor mest stabile. Fusjon av to atomkjerner som er lettere enn jern og nikkel vil frigjøre energi, mens fusjon av tyngre atomkjerner krever energi.

Fusjon krever i motsetning til fisjon alltid en startenergi for å overvinne frastøtning mellom de positivt ladede atomkjernene og går derfor ikke av seg selv under normale forhold på jorden og i universet. Sannsynligheten for at to atomkjerner fusjonerer er en funksjon av tilstrekkelig energi, tilstrekkelig tetthet, og sannsynligheten for at disse to kjernetypene reagerer (tverrsnittet). Disse betingelsene, f.eks. temperatur og trykk, må opprettholdes en viss tid uten at blandingen avkjøles og spres. Dette skjer naturlig i universet når store mengder hydrogen og helium danner en sol (stjerne), men slik fusjon av vanlig hydrogen foregår meget langsomt og kan ikke utnyttes på jorden. Det er årsaken til at normale stjerner kan brenne i mange milliarder år.