Binær relasjon

Fra Wikipedia, den frie encyklopedi
Gå til: navigasjon, søk

En binær relasjon er i matematikk en sammenheng mellom to og to objekter i en mengde. For hvert par av objekter vil relasjonen enten være sann eller ikke. Eksempler på relasjoner er «lik», «større enn», «kongruent» og «ortogonal til».

Binære relasjoner er brukt i alle deler av matematikk. En funksjon er definert som en spesiell type binær relasjon.

Formell definisjon[rediger | rediger kilde]

Dersom M er en vilkårlig mengde, og S er en delmengde av det kartesiske produktet M × M, så er S en binær relasjon i M.[1].

For ethvert ordnet par (a,b) av objekt i M kan en si at paret er med i S eller ikke. Dette er ekvivalent til å si at relasjonen mellom a og b er oppfylt eller ikke. En relasjon kan generelt skrives på formen aSb eller S(a,b), men ofte erstattes S med et mer standard symbol, som for eksempel et likhetstegn.

Egenskaper[rediger | rediger kilde]

En matematisk relasjon kan karakteriseres med følgende egenskaper:

  • Relasjonen er refleksiv dersom aSa for alle a i mengden M.
  • Relasjonen er symmetrisk dersom aSb medfører bSa.
  • Relasjonen er antisymmetrisk dersom aSb og bSa medfører at a = b.
  • Relasjonen er transitiv dersom aSb og bSc medfører aSc.

Relasjonen «større eller lik» er refleksiv, mens relasjonen «større enn» ikke er det. Relasjonen «lik» er symmetrisk, mens relasjonen «større eller lik» er antisymmetrisk.

En relasjon som er både refleksiv, symmetrisk og transitiv kalles en ekvivalensrelasjon.

Eksempler[rediger | rediger kilde]

Se Også[rediger | rediger kilde]

Referanser[rediger | rediger kilde]

  1. ^ Ronald Douglas Milne (1980). Applied functional analysis, an introductory treatment. London: Pitman Publishing Limited. ISBN 0-273-08404-6. 

Eksterne lenker[rediger | rediger kilde]