Euklidsk ring

Fra Wikipedia, den frie encyklopedi
Gå til: navigasjon, søk

Euklidisk ring eller euklidiskt område er innenfor matematikken, spesielt innenfor abstrakt algebra og ringteori, en ring med en spesiell struktur som muliggjør en variant av Euklids algoritme. Denne algoritme kan siden benyttes til det samme som den anvendes til i ringen av heltall, nemlig beregning av største felles divisor av to element.

En ring som er euklidisk har mange bra egenskaper, eksempelvis er den en prinsipalidealdomene og hvert element har en entydig faktorisering.

Definisjon[rediger | rediger kilde]

Formelt defineres en euklidsk ring som en heltallsring D hvor en kan definere en funksjon v som gjør ikkenegative elementer av D til ikke-negative heltall som oppfyller følgende divisjon med rest med følgende egenskaper:

  • Hvis a og b er i D og b er ulik null, da er det en q og en r i D slik at a = bq + r og enten r = 0 eller v(r) < v(b).

Funksjonen v kalles en valuation, en norm eller en gauge og nøkkelpunktet her er at resten r har en v-størrelse mindre enn v-størrelsen til nevneren b. Operasjonen som avbilder (a, b) til (q, r) kalles den euklidske divisjonen, hvor q kalles euklidske kvotient.

Nesten alle bøker som omhandler algebra og diskuterer euklidske ringer har med denne egenskapen:

  • For alle ikke-null a og b i D, v(a) ≤ v(ab).

En ring er et euklidiskt område om den er et integritetsområde som har en euklidisk vurdering.

Eksempel[rediger | rediger kilde]

Egenskaper[rediger | rediger kilde]

La ringen R være euklidisk med euklidisk vurdering f. Da gjelder:

Litteratur[rediger | rediger kilde]

  • Zariski, Oscar; Pierre Samuel (1958): Commutative Algebra I. D. van Nostrand.
  • Dummit, David S.; Richard M. Foote (2004): Abstract Algebra. John Wiley & Sons. ISBN 0-471-43334-9.