Matematikk

Fra Wikipedia, den frie encyklopedi
(Omdirigert fra Matematisk)
Gå til: navigasjon, søk
Euklid blir av mange regnet som geometriens far, her i et maleri av Rafael.

Matematikk (fra gresk μαθηματική, kunsten å lære) er en vitenskap som befatter seg med begreper som mengde, struktur, rom og endring. Matematikken har sitt utgangspunkt i undersøkelsen av figurer og regning med tall, og den har utviklet seg videre gjennom bruken av abstrahering og logiske slutninger. Det fins ingen allment anerkjent definisjon av matematikk, og i dag blir den vanligvis beskrevet som en vitenskap som dreier seg om å undersøke abstrakte strukturer, deres egenskaper og mønstre. Matematikere utforsker slike begreper i et ønske om å formulere nye hypoteser. Matematiske teorier blir verifisert i en streng deduksjonsprosess ut fra et sett valgte aksiomer og definisjoner.[1]

Kunnskap i og bruk av grunnleggende matematikk har alltid vært en viktig del av livet, både i individuelt og samfunnsmessig perspektiv. Disse grunnleggende matematiske ideene er blitt utviklet av matematikere helt fra de eldste sivilisasjoner og frem til våre dager. I dagens samfunn blir matematikk brukt over hele verden innen vitenskap, ingeniøryrket, medisin, økonomi, osv. Den matematikken som blir brukt innenfor slike områder, blir ofte kalt for anvendt matematikk. Matematikere jobber også med ren matematikk, som er områder av matematikken hvor man undersøker matematikk for matematikkens egen skyld og ikke har praktiske anvendelser i tankene. Ofte er det derimot slik at matematikere finner anvendelser av teorier innenfor den rene matematikken i ettertid, og mange av disse anvendelsene kan være overraskende.[2]

Etymologi[rediger | rediger kilde]

På norsk brukes både «matematikk» og det uformelle kortordet «matte». Ordet «matematikk» (gresk: μαθηματικά eller mathēmatiká) kommer fra det greske ordet μάθημα (máthēma), som betyr læring, studie og vitenskap. Ordet har også fått en mer avgrenset og teknisk betydning som «matematisk studie». Denne betydningen finner vi allerede i klassisk tid. Adjektivet μαθηματικός (mathēmatikós) er også relatert til læring, og har etterhvert fått betydningen matematisk. Uttrykket μαθηματικὴ τέχνη (mathēmatikḗ tékhnē), på latin ars mathematica, betyr matematisk kunst.

Historie[rediger | rediger kilde]

Hovedartikkel: Matematikkens historie
Den egyptiske Rhind-papyrusen

Matematikk er en av de eldste vitenskapene vi har. En tidlig blomstringstid fant sted i antikkens Hellas og i hellenismen. Det er fra denne tiden vi finner de første seriøse forsøk på logiske beviser og aksiomatisering, særlig gjennom den euklidske geometrien. I middelalderen overlevde matematikken ved de første universitetene, og i den arabiske verden.

I tiden etter dette ble variabler innført av François Viète, og René Descartes bragte for alvor regningen inn i geometrien gjennom anvendelsen av koordinater. Undersøkelsen av tangenter og flateinnhold førte til analysen/infinitesimalregningen gjennom Gottfried Wilhelm Leibniz og Isaac Newton. Newtons mekanikk og loven om tyngdekraft ble i de følgende århundrene kilder til mange ulike matematiske problemer.

Et annet hovedproblem på denne tiden var løsningen av stadig mer kompliserte algebraiske ligninger. I denne prosessen utviklet Niels Henrik Abel og Évariste Galois begrepet "gruppe" (se gruppeteori). I den videre fordypningen av disse problemstillingene ble algebraen og den algebraiske geometrien utviklet.

I løpet av 1800-tallet ble infinitesimalregningen utviklet mot den formen den har i dag, særlig påvirket av Cauchy og Karl Weierstrass' arbeider. Mot slutten av århundret ble mengdelæren utviklet av Georg Cantor.

Utviklingen i første halvdel av det 20. århundret ble særlig påvirket av David Hilberts liste over 23 matematiske problemer. Ett av disse problemene var forsøket på en fullstendig aksiomatisering av matematikken, og det var samtidig sterke forsøk på å abstrahere matematikken ytterligere. Videre utviklet Emmy Noether grunnlaget for moderne algebra, Felix Hausdorff utviklet topologien, og Stefan Banach innførte et svært viktig begrep innenfor funksjonsanalysen, nemlig såkalte Banachrom.

Innhold og områder[rediger | rediger kilde]

Følgende oversikt er ment å gi et første kronologisk overblikk over den store bredden av matematiske emner og delemner:

Ofte har man gjort et grovt skille mellom ren matematikk på den ene siden og anvendt matematikk på den annen. Til den siste kategorien hører for eksempel beregninger knyttet til forsikring og kryptografi. Overgangen mellom ren og anvendt matematikk kan ofte være noe flytende.

Kategorisering av matematikken[rediger | rediger kilde]

Gregor Reisch, Margarita Philosophica (1508)

Det har i lang tid vært store diskusjoner om hvilken kategori innenfor vitenskapene matematikken tilhører. I den engelsk- og fransktalende verden har man ofte ganske enkelt definert matematikk som vitenskap, og man har som regel ikke gjort noen videre differensiering utover dette.

Mange matematiske problemstillinger og begreper er motivert ut fra spørsmål knyttet til naturen, for eksempel gjennom fysikk og ingeniørvitenskaper. På mange måter fungerer matematikken som en slags hjelpevitenskap for de fleste naturvitenskapene, men matematikk er ikke selv en naturvitenskap i egentlig forstand. Utsagn i matematikk er for eksempel ikke avhengig av eksperimenter og observasjoner, slik som i de andre naturvitenskapene. Likevel blir det – for eksempel i tilknytning til Imre Lakatos' teorier – antydet en slags «renessanse for empirismen», hvor matematikerne setter opp hypoteser som de undersøker.

Ved norske universiteter er det ikke uvanlig at matematikk hører hjemme i samme fakultet som naturvitenskapene. For eksempel har både Universitetet i Oslo og Universitetet i Bergen et matematisk-naturvitenskapelig fakultet. Dette har sammenheng med at matematikk er en del av den globale kulturarven vår. Mennesket har til alle tider brukt og utviklet matematikk for å utforske universet, for å systematisere endringer og for å beskrive og forstå sammenhenger i naturen og i samfunnet.

I den videregående skolen står matematikk sentralt i realfagene. Historisk ble disse fagene oppfattet som eksakte vitenskaper. Matematikken har også både metodiske og innholdsmessige fellestrekk med filosofien, og logikk hører for eksempel hjemme i begge vitenskapene. Dermed kan en også argumentere for at matematikk hører med til de mer humanistiske vitenskapene.

Anvendelsesområde[rediger | rediger kilde]

Jakob Bernoulli: Ars Conjectandi (1713)

Matematikk anvendes innenfor alle de formaliserte vitenskapene. I flere århundrer har matematikken blitt utviklet gjennom fremskritt innenfor blant annet astronomi, fysikk og økonomi, og samtidig har matematikken hatt betydning for fremskritt gjort innenfor disse fagområdene. For eksempel utviklet Newton infinitesimalregningen for å få en bedre forståelse av forholdet mellom krefter og endring av krefter; Fourier la grunnlaget for det moderne funksjonsbegrepet gjennom sine bølgeligninger, og Gauss utviklet den såkalte minste kvadraters metode og systematiserte løsingen av lineære ligninger i forbindelse med landmåling omkring Hannover.

Motsatt finner vi også flere eksempler på at matematikere har utviklet teorier som man først senere har funnet tidvis overraskende praktiske anvendelser på. For eksempel har man funnet praktiske anvendelsesmåter for Boolsk algebra innen digitalteknikk og elektrisk styringsteknikk. Et annet eksempel er tallteori som i lang tid var en slags intellektuell lek uten praktisk nytte, men som i vår tid har fått en viktig rolle innenfor kryptografi – en kunnskap som er helt avgjørende for vår bruk av internett.

Matematikk som skolefag[rediger | rediger kilde]

Matematikk spiller en viktig rolle i skolen, og faget har i alle år vært ett av de mest sentrale fagene i norsk skole. Matematikk er eget fagområde i planene for både barnehage, grunnskole og videregående skole. De aller fleste høgskoler og universiteter i Norge tilbyr kurs i matematikk. I skolen skal faget medvirke til å utvikle den matematiske kompetansen som samfunnet og den enkelte trenger.

Emner og problemstillinger knyttet til undervisning og læring i matematikk blir behandlet i matematikkdidaktikken. Mange elever har vansker med matematikkfaget, og studiet av matematikkvansker er et sentralt felt som ligger i skjæringspunktet mellom matematikkdidaktikk og spesialpedagogikk.

Matematiske emner[rediger | rediger kilde]

Se også[rediger | rediger kilde]

Referanser[rediger | rediger kilde]

  1. ^ Jourdain, 2003
  2. ^ Peterson, 2001

Litteratur[rediger | rediger kilde]

  • Jourdain, Philip E.B. (2003). «The Nature of Mathematics». I James R. Newman. The World of Mathematics. Dover. ISBN 0-486-43268-8. 
  • Peterson, Ivars (2001). Mathematical Tourist, New and Updated Snapshots of Modern Mathematics. Owl Books. ISBN 0-8050-7159-8. 

Eksterne lenker[rediger | rediger kilde]

Commons-logo.svg Commons: Kategori:Mathematics – bilder, video eller lyd