Massesentrum

Fra Wikipedia, den frie encyklopedi
(Omdirigert fra Massesenter)
Gå til: navigasjon, søk

Massefellespunktet (også kalt tyngdepunktet) til et system med partikler er et spesifikt punkt hvor systemet i mange tilfeller oppfører seg som om systemets masse var konsentrert i ett punkt. Massefellespunktet gjelder bare for partiklene som systemet består av. I tilfellet av et stivt legeme, er massefellespunktet et fast punkt i henhold til legemet, men ikke nødvendigvis i kontakt med legemet. For en tilfeldig fordeling av masser vil massefellespunktet kunne være et punkt i rommet som muligens ikke korresponderer til massen hver for seg. I sammenheng med et helt uniformt gravitasjonsfelt, blir massefellespunktet ofte kalt tyngdepunktet, det vil si det punktet hvor det sies tyngdekraften påvirker legemet.

Massefellespunktet stemmer ikke alltid overens med legemets geometriske sentrum. Dette blir utnyttet blant annet av ingeniører som prøver å designe biler med så lavt tyngdepunkt som mulig og høydehoppere som bøyer deres kropp på en slik måte at kroppen overstiger stangen samtidig som deres massesentrum ikke gjør det.

Definisjon[rediger | rediger kilde]

Massesenteret \mathbf{R} av et system av partikler er definert som gjennomsnittet av deres posisjoner, \mathbf{r}_i, vektet på deres masser, m_i:

\mathbf{R} = { \sum m_i \mathbf{r}_i \over \sum m_i }

For en kontinuerlig fordeling av massetetthet \rho(\mathbf{r}) og total masse M, blir summen et integral:

\mathbf R =\frac 1M \int \mathbf{r} \; dm = \frac 1M \int\rho(\mathbf{r})\, \mathbf{r} \ dV =\frac{\int\rho(\mathbf{r})\, \mathbf{r} \ dV}{\int\rho(\mathbf{r})\ dV}

Dersom et legemes tetthet er uniform blir massesentrumet det samme som det geometriske sentrum.

Eksempler[rediger | rediger kilde]

  • Massesentrum til to partikler ligger på den korteste linjen som binder de individuelle partiklenes massesentrum. Massesentrumet er nærmest den partikkelen med den største massen.
  • Massesentrum til en ring med jevnt fordelt masse er i midten av ringen (i luften).
  • Massesentrum til et rektangel med jevnt fordelt masse er krysningspunktet til de to diagonalene.

Historie[rediger | rediger kilde]

Konseptet av et massesentrum ble først introdusert av den greske matematikeren, fysikeren og ingeniøren Arkimedes. Arkimedes viste at dreiemomentet til en stang var det samme om vekter på stangen var fordelt eller om dem var samlet på et punkt massesenteret. I forsøk med flytende masser viste han at orienteringen til den flytende massen er den samme som gjør deres tyngdepunkt lavest mulig. Han utviklet matematiske teknikker for å finne massesentrum for objekter med jevnt fordelt masse ved hjelp av forskjellige veldefinerte former. I middelalderen ble teoriene om massesentrum videre utviklet av Abu Rayhan Biruni, al-Razi (Latinsk navn «Rhazes»), Omar Khayyám og al-Khazini.[1]

Referanser[rediger | rediger kilde]

  1. ^ Salah Zaimeche PhD (2005). Merv, Foundation for Science Technology and Civilization.